Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization

نویسندگان

  • Yaochu Jin
  • Bernhard Sendhoff
چکیده

A method for incorporating fuzzy preferences into evolutionary multiobjective optimization is proposed. After introducing three commonly used models for describing fuzzy preferences, a method to convert fuzzy preferences into realvalued weight intervals is suggested. It is argued that to convert fuzzy preferences into interval-based weights is more consistent with the motivation of using fuzzy preferences than to convert them into single-valued crisp weights. The weight intervals are combined with the evolutionary dynamic weighted aggregation to obtain the preferred Pareto-optimal solutions. Simulation examples are given to show how the desired Pareto-optimal solutions can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Un Nuevo Método de Explotar Relaciones de Preferencia Borrosas en Agentes de Decisión

The normative approach for decision-making is the dominant paradigm in designing intelligent decision agents. We discuss here the advantages of a more flexible way based on fuzzy logic. However, most exploitation methods of fuzzy preference relations do not provide good prescriptions. Recently some approaches based on the idea of reducing inconsistencies using evolutionary multiobjective optimi...

متن کامل

A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation

The multiple criteria aggregation methods allow us to construct a recommendation from a set of alternatives based on the preferences of a decision maker. In some approaches, the recommendation is immediately deduced from the preferences aggregation process. When the aggregation model of preferences is based on the outranking approach, a special treatment is required, but some non-rational viola...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Evolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction

− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...

متن کامل

Interactive Fuzzy Modeling by Evolutionary Multiobjective Optimization with User Preference

One of the new trends in genetic fuzzy systems (GFS) is the use of evolutionary multiobjective optimization (EMO) algorithms. This is because EMO algorithms can easily handle two conflicting objectives (i.e., accuracy maximization and complexity minimization) when we design accurate and compact fuzzy rule-based systems from numerical data. Since the main advantage of fuzzy rule-based systems co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002